DIY编程器网

 找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 758|回复: 0
打印 上一主题 下一主题

[待整理] CCITT CRC-16计算原理与实现

[复制链接]
跳转到指定楼层
楼主
发表于 2014-10-10 08:38:18 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除 数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。
差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。
利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督 码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以 确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。 
1 代数学的一般性算法
在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。
设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。
发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为
T(x)=xrP(x)+R(x)
接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。
举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为
xrP(x)     x3(x3+x2)     x6+x5                    x
-------- = ---------- = -------- = (x3+x2+x) + --------
G(x)       x3+x+1      x3+x+1                 x3+x+1
即 R(x)=x。注意到G(x)最高幂次r=3,得出CRC为010。
如果用竖式除法,计算过程为
1110
-------   
1011 /1100000     (1100左移3位)
1011
----
1110
1011
-----
1010
1011
-----
0010
0000
----
010
因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010
如果传输无误,
T(x)     x6+x5+x
------ = --------- = x3+x2+x,
G(x)     x3+x+1
无余式。回头看一下上面的竖式除法,如果被除数是1100010,显然在商第三个1时,就能除尽。
上述推算过程,有助于我们理解CRC的概念。但直接编程来实现上面的算法,不仅繁琐,效率也不高。实际上在工程中不会直接这样去计算和验证CRC。
下表中列出了一些见于标准的CRC资料:

[size=10.8333px]
            
名称

            
            
生成多项式

            
            
简记式*

            
            
应用举例

            
            
CRC-4

            
            
x4+x+1

            
            

            
            
ITU G.704

            
            
CRC-12

            
            
x12+x11+x3+x+1

            
            

            
            

            
            
CRC-16

            
            
x16+x12+x2+1

            
            
1005

            
            
IBM SDLC

            
            
CRC-ITU**

            
            
x16+x12+x5+1

            
            
1021

            
            
ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS

            
            
CRC-32

            
            
x32+x26+x23+...+x2+x+1

            
            
04C11DB7

            
            
ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS

            
            
CRC-32c

            
            
x32+x28+x27+...+x8+x6+1

            
            
1EDC6F41

            
            
SCTP

            

*  生成多项式的最高幂次项系数是固定的1,故在简记式中,将最高的1统一去掉了,
如04C11DB7实际上是104C11DB7。

** 前称CRC-CCITT。ITU的前身是CCITT。

2.CRC算法的实现
---------------
要用程序实现CRC算法,考虑对第2节的长除法做一下变换,依然是M = 11100110,G = 1011,
其系数r为3。
11001100
------------------------
1011 )11100110000
1011.......
----.......
1010......
1011......
----......
1110...
1011...
------...
1010..
1011..
-------
100 <---校验码
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏 分享分享 支持支持 反对反对
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|文字版|手机版|DIY编程器网 ( 桂ICP备14005565号-1 )

GMT+8, 2025-1-24 05:37 , 耗时 0.096566 秒, 19 个查询请求 , Gzip 开启.

各位嘉宾言论仅代表个人观点,非属DIY编程器网立场。

桂公网安备 45031202000115号

DIY编程器群(超员):41210778 DIY编程器

DIY编程器群1(满员):3044634 DIY编程器1

diy编程器群2:551025008 diy编程器群2

QQ:28000622;Email:libyoufer@sina.com

本站由桂林市临桂区技兴电子商务经营部独家赞助。旨在技术交流,请自觉遵守国家法律法规,一旦发现将做封号删号处理。

快速回复 返回顶部 返回列表