DIY编程器网

 找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 997|回复: 0
打印 上一主题 下一主题

[待整理] 运算放大器电路固有噪声的分析与测量(第二部分):运算放大器噪声介绍(一)

[复制链接]
跳转到指定楼层
楼主
发表于 2014-10-11 14:08:45 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
  噪声的重要特性之一就是其频谱密度。电压噪声频谱密度是指每平方根赫兹的有效(RMS) 噪声电压(通常单位为nV/rt-Hz)。功率谱密度的单位为W/Hz。在上一篇文章中,我们了解到电阻的热噪声可用方程式 2.1 计算得出。该算式经过修改也可适用于频谱密度。热噪声的重要特性之一就在于频谱密度图较平坦(也就是说所有频率的能量相同)。因此,热噪声有时也称作宽带噪声。运算放大器也存在宽带噪声。宽带噪声即为频谱密度图较平坦的噪声。
方程式 2.1:频谱密度——经修改后的热噪声方程式。

            

            
            
图 2.1:运算放大器噪声频谱密度。

            

  除了宽带噪声之外,运算放大器常还有低频噪声区,该区的频谱密度图并不平坦。这种噪声称作 1/f 噪声,或闪烁噪声,或低频噪声。通常说来,1/f 噪声的功率谱以 1/f 的速率下降。这就是说,电压谱会以 1/f(1/2 ) 的速率下降。不过实际上,1/f 函数的指数会略有偏差。图 2.1 显示了典型运算放大器在 1/f 区及宽带区的频谱情况。请注意,频谱密度图还显示了电流噪声情况(单位为 fA/rt-Hz)。
  我们还应注意到另一点重要的情况,即 1/f 噪声还能用正态分布曲线表示,因此第一部分中介绍的数学原理仍然适用。图 2.2 显示了1/f 噪声的时域情况。请注意,本图的 X 轴单位为秒,随时间发生较慢变化是1/f 噪声的典型特征。
            
图 2.2:时域所对应的 1/f 噪声及统计学分析结果。

            

  图 2.3 描述了运算放大器噪声的标准模型,其包括两个不相关的电流噪声源与一个电压噪声源,连接于运算放大器的输入端。我们可将电压噪声源视为随时间变化的输入偏移电压分量,而电流噪声源则可视为随时间变化的偏置电流分量。
图 2.3:运算放大器的噪声模型。

运算放大器噪声分析方法
  运算放大器噪声分析方法是根据运放数据表上的数据计算出运放电路峰峰值输出噪声。在介绍有关方法的时候,我们所用的算式适用于最简单的运算放大器电路。就更复杂的电路而言,这些算式也有助于我们大致了解可预见的噪声输出情况。我们也可针对这些更复杂的电路提供较准确的计算公式,但其中涉及的数学计算将更为复杂。对更复杂的电路而言,或许我们最好应采用三步走的办法。首先,用算式进行粗略的估算;然后,采用 spice 仿真程序进行更准确的估算;最后通过测量来确认结果。
  我们将以 TI OPA277 的简单非反向放大器为例来说明有关电路的情况(见图 2.4)。我们的目标是测定峰峰值输出噪声。为了实现这一目的,我们应考虑运算放大器的电流噪声、电压噪声以及电阻热噪声。我们将根据产品说明书中的频谱密度曲线来确定上述噪声源的大小。此外,我们还要考虑电路增益与带宽问题。
            

            
            
图 2.4:噪声分析电路示例。

            

  首先,我们应了解如何将噪声频谱密度曲线转换为噪声源。为了实现这一目的,我们需进行微积分运算。简单提醒一句,积分函数确定曲线下方的面积。图 2.5 显示,我们只须将长宽相乘(即矩形区域面积),便能获得常数函数的积分。这种转换频谱密度曲线为噪声源的关系比较简单。
            

            
            
图 2.5:通过积分计算曲线下方面积。

            

  人们通常会说,只有将电压频谱密度曲线进行积分计算,才能得到总噪声值。事实上,我们必须对功率谱密度曲线进行积分计算。该曲线实际反映的是电压或电流频谱密度的平方(请记住:P = V2/R 且 P=I2R)。图 2.6 显示了对电压频谱密度曲线进行积分计算所得的奇怪结果。图 2.7 显示,您可将功率谱密度进行积分计算,再通过求结果的平方根将其转换回电压。请注意,我们由此可获得合理结果。
            
图 2.6:计算噪声的不正确方法。

            

            

            
            
图 2.7:计算噪声的正确方法。

            

  通过对电压与电流频谱的功率谱密度曲线进行积分计算,我们可得到运算放大器模型信号源的 RMS 幅度(图 2.3)。不过,频谱密度曲线将分布在 1/f 区与带低通滤波器的宽带区(见图 2.8)。如计算上述两个区域的总噪声,我们要采用微积分计算推导出的算式。再根据第一部分所讨论的处理非相关信号源的方法,对上述两个计算的结果做和的平方根 (RSS) 运算,对应第一部分中提到的非相关信号源。
  首先,我们要对带低通滤波器的宽带区域进行积分计算。理想情况下,曲线的低通滤波器部分是一条纵向直线,我们称之为砖墙式滤波器 (brick wall filter)。由于砖墙式滤波器情况下的曲线下方区域为矩形,因此这一区域的问题比较好解决,长乘宽即可。在实际情况下,我们不能实现砖墙式滤波器。不过,我们可用一组常量来将实际情况下的滤波器带宽转换为等效的砖墙式滤波器带宽,以满足噪声计算的需要。图 2.9 将理论砖墙式滤波器与一阶、二阶及三阶滤波器进行了对比。
            

            
            
图 2.8:带滤波器的宽带区。

            

            

            
            
图 2.9:砖墙式滤波器与实际滤波器相比较。

            

  我们可用方程式 2.2 用于转换实际滤波器或做砖墙式滤波器等效。表 2.1 列出了各阶滤波器的换算系数 (Kn)。举例来说,一阶滤波器带宽乘以 1.57 即为砖墙式滤波器带宽。调节后的带宽有时也称作噪声带宽。请注意,换算系数随着滤波器阶数的提升将越来越接近于1。换言之,滤波器阶数越高,就越接近于砖墙式滤波器。
            

            
            
方程式 2.2:宽带区域上简单滤波器的噪声带宽。

            

            
表 2.1:砖墙式滤波器校正系数。

            
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏 分享分享 支持支持 反对反对
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|文字版|手机版|DIY编程器网 ( 桂ICP备14005565号-1 )

GMT+8, 2025-2-8 05:22 , 耗时 0.090780 秒, 21 个查询请求 , Gzip 开启.

各位嘉宾言论仅代表个人观点,非属DIY编程器网立场。

桂公网安备 45031202000115号

DIY编程器群(超员):41210778 DIY编程器

DIY编程器群1(满员):3044634 DIY编程器1

diy编程器群2:551025008 diy编程器群2

QQ:28000622;Email:libyoufer@sina.com

本站由桂林市临桂区技兴电子商务经营部独家赞助。旨在技术交流,请自觉遵守国家法律法规,一旦发现将做封号删号处理。

快速回复 返回顶部 返回列表