运算放大器通常用于在工业流程控制、科学仪器和医疗设备等各种应用中产生高性能电流源。《模拟对话》1967年第1卷第1期上发表的" 单放大器电流源"介绍了几种电流源电路,它们可以提供通过浮动负载或接地负载的恒流。在压力变送器和气体探测器等工业应用中,这些电路广泛应用于提供4-mA至20-mA或0-mA至20-mA的电流。
图1所示的改进型Howland电流源非常受欢迎,因为它可以驱动接地负载。允许相对较高电流的晶体管可以用MOSFET取代,以便达到更高的电流。对于低成本、低电流应用,可以去除晶体管,如《模拟对话》2009年第43卷第3期" 精密电流源的心脏:差动放大器"所述。
这种电流源的精度取决于放大器和电阻。本文介绍如何选择外部电阻以最大程度减少误差。
图1. 改进型Howland电流源驱动接地负载。
通过对改进型Howland电流源进行分析,可以得出传递函数:
<div style="clear:both;"> 提示4:电阻容差影响电流精度
实际电阻从来都不是理想的,每个电阻都具有指定的容差。图3显示了示例电路,其中R1 = R2 = R3 = R4 = 100 kΩ,R5 = 100 Ω,而且RL = 500 Ω。在输入电压设置为0.1 V的情况下,输出电流应该为1 mA。表1显示由于不同电阻容差而导致的输出电流误差。为达到0.5%的电流精度,请为R1/R2/R3/R4选择0.01%的容差,为R5选择0.1%的容差,为RL选择5%的容差。0.01%容差的电阻成本昂贵,因此更好的选择是使用集成差动放大器(例如 AD8276,它具有更好的电阻匹配,而且更加经济高效。
图3.IOUT= 1 mA的示例电路。
表1. 最差情况输出电流误差(%)与电阻容差(%)
电阻容差/电阻变化
| 5
| 1
| 0.5
| 0.1
| 0.05
| 0.01
| 0
| R1/R2/R3/R4
| 110.11
| 10.98
| 5.07
| 1.18
| 0.69
| 0.30
| 0.20
| R5
| 5.05
| 1.19
| 0.70
| 0.30
| 0.25
| 0.21
| 0.20
| RL
| 0.21
| 0.20
| 0.20
| 0.20
| 0.20
| 0.20
| 0.20
| <div style="clear:both;"> |