DIY编程器网

 找回密码
 注册

QQ登录

只需一步,快速开始

扫一扫,访问微社区

查看: 1087|回复: 0
打印 上一主题 下一主题

[待整理] 数字电源UCD92xx 输出电压波形的优化

[复制链接]
跳转到指定楼层
楼主
发表于 2014-10-11 08:02:24 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

        基于UCD92xx 与UCD7xxx 的非隔离数字电源,其输出电压在软启动阶段经常出现“台阶”现象,波形不平滑,尤其是输出电压设定为较低值时,如1.0V。这种“台阶”现象与UCD92xx 软启动的设计原理有关,但完全可以通过一定的措施来优化并最终解决。本文从UCD92xx 的环路和最小占空比宽度两个方向进行优化与分析,最终取得了理想的效果。
         
        1软启动原理及待优化输出电压波形
        数字电源UCD92xx 的软启动是通过对参考电压以步进方式增加来实现的,整个过程是由芯片内部的软件自动完成的。在一款基于UCD9224 和UCD74120 的单板上测试时发现,其输出电压波形在软启动阶段有明显的“台阶”现象,波形不平滑。
         
        1.1 数字电源软启动原理介绍
        图1 所示的是数字电源UCD92xx 的功率支路和控制支路。控制支路主要集成在UCD92xx 芯片内部,包含误差生成及模数转换,环路补偿,PWM计算及产生等。其中,参考电压(VREF)电压的设置亦包含在控制支路。
         
        依据软件算法,在软启动阶段,VREF 每100us 增加一次,直至软启动完成,即输出电压达到最终的设定值。例如,输出电压设定为1.0V,软启动的时间设置为4ms,则在软启动阶段输出电压每一次增加25mv,直至达到1.0V。
         
       

        图 1:数字电源功率级和控制级框图

         

        1.2 待优化的输出电压波形
        图2 所示的是输出电压波形,可以观察到在软启动阶段输出电压的波形不够平滑,有明显的“台阶”现象。该波形是在一款基于UCD9224 和UCD74120 的参考版上测得。主要测试条件为:测试环境常温,输入电压为12V,输出电压为1.0V,输出端带载20A。另外,测试时,数字环路的详细配置见下文2.4 节。
         

        图 2:输出电压波形

         

        1.3 输出电压台阶现象的初步分析
        图3 所示的是时间轴展开后观察到的输出电压波形。通过测量可知,每经过100us 输出电压增加一次,增加的幅度大约为23mV,与理论计算值25mV 基本一致。
         
        同时也可以观察到,输出电压的每一次增加都是很快的完成,而不是缓慢增加。从功率级支路上分析,这是由于占空比快速增加造成。从控制级支路分析,则原因可以初步归结为环路过快造成的。
         
       

        图 3:输出电压的步进幅度

         
        2 数字电源模拟前端及环路
        数字电源控制环路包含了模拟前端,数字环路补偿等模块,在配置环路时需要综合考虑。其中,数字环路还包含非线性增益模块,使能后可以有效提升整个电源的动态响应性能。
         
        2.1 数字电源模拟前端(AFE
        图4 红色框内电路为数字电源模拟前端(Analog-Front End,AFE)的一部分,其增益可以设置为1,2,4,8 等四个不同的值。设置不同的增益,则ADC 的输出精度也随之不同,比如设置增益为4,则输出精度为2mV;设置增益为1,则输出精度为8mV。
         
        在相同输入误差(VEAP-VEAN)的情况下,不同的AFE 增益值将直接影响环路指标。其影响趋势为,增益越大,环路带宽越宽。
         
       

        图 4:数字电源的模拟前端

        2.2 数字电源环路
        图5 所示的是数字电源的环路框图。其中, 是误差放大器的输出,为数字信号; 是环路的输出,亦为数字信号,输入到PWM模块。 模块是非线性增益模块,可以使能或禁止,下一节会进行详细分析。a1, a2, b0, b1, b2 是环路补偿的系数,允许用户修改以适应不同的功率级设计。需要说明的是,UCD92xx 内部设计有2 套a1~b2 的参数,分别用于软启动阶段和正常运行阶段。
         
       

        图 5:数字电源环路框图

         

        2.3 非线性增益
        图5 中的模块即为非线性增益模块,其详细的框图如图6。当en 不超过lim0 时,增益为Gin0;当en超过Lim0 但不超过lim1 时,增益为Gain1;依此类推。非线性增益模块依据误差放大器的输出进行不同程度的放大,可以有效的提升动态响应性能。如果Gain0设置为1,即便使能非线性增益模块,也不会影响环路指标。如果Gain0 由1 修改为0.75 或1.25,则会影响环路指标。其影响趋势为,增益越大,环路带宽越宽。
         
       

        图 6:非线性增益模块

         

        2.4 数字电源环路配置
        图6 和图7 是使用数字电源开发工具Fusion Digital Power Designer 来配置环路的软件截图。该工具可以模拟整个环路并给出配置之后的闭环环路指标,包括截止频率,相位余度和增益余度,极大的方便了环路的调试和优化。
         
        图6 所示的是软启动时的环路配置。零极点的信息在“Linear Compensation”方框中,其中AFE 的Gain 设置为4×;该配置中使能了非线性增益,其Limit 值和Gain 值是允许用户修改的。最终,整个环路的指标为23.87KHz(截止频率),49.33°(相位余度),11.77dB(增益余度)。
         
        图7 所示的是正常运行时的环路配置。零极点的信息在“Linear Compensation”方框中,其中AFE 的Gain 为4×;该配置中使能了非线性增益,其Limit 值和Gain 值是允许用户修改的。最终,整个环路的指标为33. 7KHz(截止频率),50.57°(相位余度),8.77dB(增益余度)。
         
        正是采样上述配置,输出电压在软启动阶段其波形有明显的“台阶状”。下面将尝试放慢环路后,验证是否可以优化软启动阶段的波形。
         
       

        图 7:软启动环路配置           图 8:正常运行时的环路配置

                 3 调整最小驱动时间进一步优化输出波形
        优化环路后输出电压在软启动阶段变得较为平滑,但会存在一个明显的过冲,需要进行优化。下文通过调整最小占空比宽度来消除该过冲。
         
        3.1 数字电源软启动的kick-start
        图12 中所示的是数字电源的输出电压软启动示意图。在开始时刻,输出电压有一个快速的上升,称之为“Kick-start”。 Kick-start 的幅度是根据下面公式计算出的:
        Vstart =Vin×DRIVER_MIN_PULSE × Fsw
         
        其中,DRIVER_MIN_PULSE 是指UCD92xx 发出的最小占空比的宽度,允许用户自行设定。
         
       

        图 12:输出电压软启动

         

        以图10 为例,输出电压Kick-start 的幅度约为185mV。其DRIVER_MIN_PULSE 设置为50ns,理论计算Kickstart的幅度为:12V×50ns×300KHz=180mV。实际值与理论值基本一致。
         
        3.2 调整最小占空比宽度
        将DRIVER_MIN_PULSE 由目前的50ns 修改为5ns,以验证其对输出电压的过冲有无改善。图13 即为输出电压波形,可以观察到过冲已经消失,但在起始时刻,输出电压不再平滑。
         
        分析原因可知,当DRIVER_MIN_PULSE 设置为5ns 后,虽然UCD9224 可以发出宽度为5ns 的驱动脉冲,但UCD74120 对最小占空比的宽度有要求,5ns 的宽度不足以使集成在UCD74120 内部的buck 上管导通,从而造成了输出电压上升的不平滑。
         
       

        图 13:最小占空比宽度修改为5ns 后的输出电压波形

         

        过小的DRIVER_MIN_PULSE 值会使输出电压在起始时刻变得不再平滑;过大的DRIVER_MIN_PULSE 的值则会带来正向过冲。因此,需要找到一个平衡点。
         
        逐步增大DRIVER_MIN_PULSE 的值,当设置为43ns 时,达到了较为理想的平衡点,输出电压的波形如图14所示,输出不再有正向过程,而且在整个软启动阶段输出电压波形都比较平滑。
         
        此时,输出电压Kick-start 的幅度约为160mV。其DRIVER_MIN_PULSE 为43ns,理论计算Kick-start 的幅度为:12V×43ns×300KHz=154.8mV。实际值与理论值基本一致。
         

       

        图 14:最终优化的输出电压波形

         
        4 结论
        通过修改AFE 的增益值和禁止非线性增益等措施优化软启动对应的环路参数后,可以消除输出电压的“台阶”现象,使波形单调平滑上升。正常运行的环路参数无需改动,保证了其较高的带宽,从而使输出电压的精度和动态响应等指标保持不变。通过优化最小占空比的宽度,可以消除在kick-start 之后的正向过程,使输出电压波形单调平滑。
         
        综上两类优化措施,最终可以使输出电压波形在整个软启动阶段单调平滑。
         
        5 参考文献
        1. UCD92xx-Design-Guide, Texas Instruments Inc., 2011
        2. UCD9224 datasheet, Texas Instruments Inc., 2010
        3. UCD74120 datasheet, Texas Instruments Inc., 2012
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友 微信微信
收藏收藏 分享分享 支持支持 反对反对
您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|文字版|手机版|DIY编程器网 ( 桂ICP备14005565号-1 )

GMT+8, 2025-1-26 06:02 , 耗时 0.086176 秒, 21 个查询请求 , Gzip 开启.

各位嘉宾言论仅代表个人观点,非属DIY编程器网立场。

桂公网安备 45031202000115号

DIY编程器群(超员):41210778 DIY编程器

DIY编程器群1(满员):3044634 DIY编程器1

diy编程器群2:551025008 diy编程器群2

QQ:28000622;Email:libyoufer@sina.com

本站由桂林市临桂区技兴电子商务经营部独家赞助。旨在技术交流,请自觉遵守国家法律法规,一旦发现将做封号删号处理。

快速回复 返回顶部 返回列表