图4 电容反馈电容的作用
极点出现在1/2πRFCF,零点出现在1/[2π(RF∥RG∥RO)CF]。如果ZF与ZOC 交点处频率太高,开环相移太大会引起不稳定。对于积分电路,若RF→∞,极点出现在低频处,在高频处几乎没有电阻限制环路增益,为限制环路高频增益,用一个电阻与积分电容串联用来限制高频环路增益,这样可以稳电流反馈积分器。CFA不适用于电抗反馈型滤波器结构,例如阻容并联的反馈滤波器,但用CFA构成的SallenKey滤波器除外,因为它被用作固定增益单元电路。总之,不希望在CFA的RF两端并接电容。另一个要考虑的问题是CFA的反向输入端旁路电容的影响。记得VFA,旁路电容会在噪声增益上建立一个零点,增加噪声增益与开环增益间的闭合速度(rate of closure),若不进行频率补偿,产生过大的相移会导致电路不稳定。对CFA,旁路电路有同样的影响,只不过此问题讲得较少。附加输入旁路电容的反馈电阻表达式可写作:
ZF(s)=[RF+RO(1+RFRG)][1+sC IN RFRGRO]RFRG+RFRO+RGRO]零点出现在1/[2π(RF∥RG∥RO)C ON ],见图5中f Z1 。这个零点使CFA产生和VFA一样的麻烦,只是由于反相输入阻抗低,零点的转折频率变高。考虑宽带VFA的RF=750Ω,RG=750Ω,C IN =10pF,在1/[2π(RF∥RG)C IN ]处的零点频率约为40MHz,RO为40Ω而其它电路参数完全相同的CFA将把零点抬高到400MHz左右。对于单位增益带宽都为500MHz的两种运放,VFA需要有反馈电容补偿,以减小C IN 的影响,同时要减小信号带宽。CFA虽然因零点会有一些附加的相移,但由于转折频率高十倍,受C IN 的影响就没有VFA那么大。CFA的信号带宽比VFA要大,若要求通带内平坦或脉冲响应最优,也可以进行补偿。为减小ZF和Z OL 之间的闭合速度,加一个小电容并联在RF上,就可以改善响应。要至少保证45°的相位裕度,应当选择反馈电容放到ZF与ZOL 相交的极点处,如图5中fP点。请不要忘记反馈电容所产生的高频零点f Z2 的影响。