① 实验的原始想法是只测来源于CAN电缆干扰的误码,所以把CAN发送和接收节点放在屏蔽箱内,用二条电缆传送信号,一条在箱内,一条在箱外,通过比较从二条电缆收到的数据流,计算出误码率。但是将手机放在不带屏蔽、不作双绞的通信线上进行另外的实验时,却没有任何出错,说明来自空间的干扰影响很小。而实际恶劣环境下现场被测试设备的电源与干扰源的电源并不独立。与此对比,认为出错是通过电源传导的,这与原始设想不同。
② 实验的恶劣环境是指电焊机工作时的干扰,并无具体的数量指标,无法与汽车的电源传导干扰相比较(ISO7637)。实际上可能不如汽车电源干扰大。
③ 在电源传导干扰下,造成误码计数的情形较复杂。它与可能的故障位置、CAN收发节点状态有关。误码有多算也有少算的情形。
④ 电焊机是人工操作,通信实验中干扰源只在部分时间存在,计算误码率的通信总量多算了。
[1] Tindell K W, Burns A. Guaranteeing message latencies on Controller Area Network (CAN)[C]. In Proceedings of 1st International CAN Conference, pp. 111, September 1994.
[2] Fuhler T,et al. Time Triggered Communication on CAN[C]. Robert Bosch GmbH, Proceedings 7th International CAN Conference, Amsterdam, Holland, 2000.
[3] Ferreira J,Oliveira A,Fonseca P,et al. An experiment to assess bit error rate in CAN[C]. RTN 2004 3rd Int. Workshop on RealTime Networks sattelite held in conjunction with the 16th Euromicro Intl Conference on RealTime Systems, June 2004.
[4] Ferreira J. PhDjjcf_Charpter_4.pdf
[5] 杨福宇. CAN总线的局限[J]. 电子设计应用,2006(11):32, 34.